
Internet2/Google Summer of Code Final Report

Open Source µ-Measurements: Characterizing Machine Noise

Impact on Network Delay Metrics

Cesar Marcondes (UCLA)

Mentor: Stanislav Shalunov (Internet2)

08/20/2005

Abstract

The project initial proposal was based on the Internet2 Project Idea: “Noise calibration for bulk

transport tool”. Basically, the project consisted on collect and analyze data to determine timing noise of

packets sent across a network. It was defined in the context of the project that the noise to be measured

would be obtained by comparing depart and arrive timestamps, minus the original signal, as a way to

verify the impact of the noise. The noise, of course, would depend on the test environment, such that a

variety of environments would work best. However, in all cases the network delay (the signal) needs to

be known—otherwise, it becomes impossible to separate from noise before the characteristics of noise are

known. So, a back-to-back environment was used. The most important task was to vary the operating

system (different implementation port of the micro-measurement tools) and the load on the machines (it’s

the machines themselves that are the source of the noise; the rest, by definition, is signal). The purpose

of this project was to provide input for building the Internet2 bulk transport tool. As a final note, it was

developed and evaluated under the Google Summer of Code Project 2005.

CONTENTS LIST OF FIGURES

Contents

1 Introduction 3

2 µ-Measurements Tools 4

3 Noise Characterization 7

3.1 Back-to-Back Dispersion - Interarrival Packet Difference . 7
3.2 Internal Queueing Delay . 10
3.3 Inserting Machine Stress in Network Delay Measurements . 12

4 References 15

List of Figures

1 Hash-Based Measurements . 5
2 Packet-Based Measurements . 6
3 Inter Packet Departures . 7
4 Inter Packet Arrival under Coalescing . 7
5 Interarrival Packet Dispersion Under Coalescence . 8
6 Interarrival Packet Dispersion Under Coalescence . 9
7 Internal IP Queue Measurement . 10
8 Internal IP Queue Under CBR and No Coalescing . 11
9 Erlang PDF varying the bulk size (n. of stages) . 12
10 No Stress Back to Back and Internal Queueing Measurement 12
11 Internal IP Queue Measurement under CPU Stress (a)(b)(c) 25%, (d)(e)(f) 50%, (g)(h)(i) 75% 13
12 Impact of Coalescing on Internal IP Queue Size . 14
13 Internal IP Queue Measurement under CPU Stress (a)(b)(c) 25%, (d)(e)(f) 50%, (g)(h)(i) 75% 15

2

1 INTRODUCTION

1 Introduction

The Internet has been upgraded successfully in the recent years, leading to a substancial boost of its own
capillarity towards a next level ultra speed backbones with tenths of gigabit/s pipes in the core. On such en-
vironment, the common network bottleneck shifts from the wide-area to the end-host machine itself since the
backbone can sustain plenty of bandwidth easily. Therefore, in order to keep up high processing performance,
and sustain high network load as well, new network hardware mechanisms and operating systems designs have
been proposed to tackle such problem using complicated tricks to offload the burden of processing millions of
packets per seconds (as modern routers), reducing the likelihood of poor performance due to the very machine.

The main idea of this work is to gain insight about the influence of these new “offload” mechanisms on
delay based measurements. In order to accomplish this, we focus mainly on micro measurement and char-
acterization using instrumented open source kernel software based on Linux and FreeBSD. The major goal
is to assess the influence of machine offload mechanisms and different machine processing/memory/IO load
compositions over network delay measurements. In this document, we call any “change” of the supposed
correct packet timestamping from the sender NIC card to the receiver application layer as “machine noise”.
Machine noise can be interpreted in different views but for our purposes, it represents errors/adaptation
injected by the pair OS/HW, not network jitter. Therefore, for the whole set of experiments, we confined
our tests only on a back to back machine basis.

In addition, this study can be seen as an important step towards achieve robust delay-based measurement
algorithms in presence of offload mechanisms. For example, despite the improvement in capacity of the Inter-
net, few transport protocols have shown the ability to obtain the huge residual capacity (gigabit/s) of these
links. The most successful ones are TCP protocols like FAST, BIC, and TCP Westwood that accomplish
high efficiency based on delay congestion control algorithms. It’s easy to see the advantage of these advanced
protocols compared to TCP NewReno since such delay based algorithms returns much more information
about the path conditions than pure loss based algorithms. However, as we pointed out before, as the speed
continues to raise, their own foundations on delay measurements can suffer a lot of difficulty on factoring
out network delays (i.e. queueing delays). Perhaps, depending on the speed we are dealing with the offload
mechanisms couldn’t have a strong influence. Although, as the network reaches 1Gbps speeds, even a few µ

secs error in an estimation could represent a fair amount of wasted traffic.

Finaly, following this new trends in high speed scenarios, in parallel to TCP advances, there is an idea
to bulk transfer using rate-based algorithms over UDP that could reduce the burstiness of TCP algorithms
and transfer huge demands of traffic even under small buffers, a very likely scenario in the future. However,
as their TCP cousins, unfortunately they also suffer from the same problem, since they could be also based
on the natural information-augumented delay measurements.

3

2 µ-MEASUREMENTS TOOLS

The rest of the report is organized as follows. In section II, we present our characterization tools discussing
the underneath ideas for improved accuracy on the network measurements. In section III, we perform an
extensive set of tests, fully characterizing the network/machine behavior at micro scale. In section IV, we
present a simplified model of deconvolution of the the composed final packet dispersion measurement and an
bulk arrival erlang model to obtain the original signal. Section V concludes the report.

2 µ-Measurements Tools

The tools described in this section were designed to measure the effect of machines impairments on network
delay measurements. We developed this set of supplementary tools as pure open source software, as part of
an initiative led by Google during Summer 2005. Our main goal was to capture fine granularity details of
different traffic patterns as well as hardware mechanisms to alleviate high interrupt loads such as interrupt
coalescing.

We chose as development platform a variety of operating system: mainly Linux (2.4-branch), Linux (2.6-
branch) and FreeBSD 5.4. Such multitude of operating systems is a powerful way of generalize results and
test under different computer architectures. It’s also a good way to openly allow other developers to perform
further estimation and filtering work in such open based kernel systems. The choice of two Linux kernels
rely on the increase on Linux most advanced kernel banch to support more network offload mechanisms to
scalable high-speed networking. One example of this trend, it’s the the newest Linux 2.6 using NAPI that
instead of per-packet interrupt scheduling and processing introduces the concept of one scheduled interrupt
per pool. There are even more recent movements inside the Linux community to offload the kernel and rely
heavily on the NIC cards to support 10bps of bandwidth.

One of the first assumptions of our micro-measurement tools was to assure that a quite accurate precision
could be reached. Therefore, in all our open source modifications of the kernel, we heavy use the Intel-specific
TSC register. Basically, TSC is a instruction counter that has the same stable features of the CPU oscillator.
It’s usually used for operating system profiling and high performance end tests. It has an astonishing reso-
lution of 0.3271 nano seconds, since in our case, we were using 3.06GHz machine. And additionaly we can
add that the register read is extremely fast and smaller than 50 nanosec. In terms of bottleneck computer
architecture we used 3 Intel Xeon machines: 1 Dual (2 CPU) 3.06 Ghz Xeon with Cache 512KB L2/1GB L3,
1GB RAM and PCI-X Architecture and the other 2 Dual (only 1 CPU) 3.06 Ghz Xeon with Cache 512KB
L2/1GB L3, 1GB RAM and PCI-X Architecture. The main advantage of using such powerful architectures
is that we can stress the network conditions even further instead of cutting short of other resources such as
I/O bus and memory-CPU bus.

4

2 µ-MEASUREMENTS TOOLS

We developed in Linux and FreeBSD, three different schemes increasing in software complexity. The first
scheme, the most naive one relies simply on kernel debugging features been generated directly to a separate
RAMdisk in order to obtain the results of back-to-back packet dispersions and internal queueing delays,
we called this scheme log-based. The main advantage is that it was easy to get started, very simple and
when generating to the RAMdisk in these powerful machines. However, even though we are using only main
memory to store the timestamps, when the number of timestamps - proportional to the number of packets is
high, we might suffer some page faults since the amount of used memory can be larger than the cache memory.

A more sophisticated method reducing the usage of RAM memory, that tries to fit the whole arrival time
histogram in one single memory page in cache and therefore removing the extra IO operation was the so-called
hash-based measurement mechanism. The reasoning behind it is to mimic an online real-time histogram as
the packets reach the specific parts of software using a hash table to bucket sort according to the interarrival
time. The following Figure 1 presents the mechanism based on the mask of a certain number of bits. The
measurement resolution can be configured by the user using a sysctl variable, but the amount of memory to
be used is always the same. Using the new measurement reset system call the user can clear the hash table
and retrieve after the measurement, the correspondent histogram results.

Figure 1: Hash-Based Measurements

5

2 µ-MEASUREMENTS TOOLS

The last method explore more correlated information among packets than the previous two methods, it’s
called packet-based measurement mechanism and it’s a modification of the kernel to write inside the packet
small timestamps as it passes through the main internal queues. In the case of the Linux kernel, there are
essentially 3 main queues, the socket queue (nearest to the application itself), the ip queue usually the own
that grows the most because of multiplexing of TCP/UDP/IP packets and the NIC/ring queue (smallest
memory mapped IO area of the packets copied by DMA). We placed our code in the respective calls of every
other part of the Unix kernel packet path to observe how they behave and we send a 1500 bytes UDP packet
using port 5003 with the payload area zero so that the timestamps can be placed in the respective offsets,
see more details in Figure 2.

One of the main motivation ideas of this scheme was to use a similar functionality already proposed in the
ICMP-replacement protocol “IPMP” (Internet Measurement Protocol), basically the protocol allows probing
packets to grow and trace the routers and the timestamp delay (queue size) as they passes through. The
approach here is slightly different though, the idea is timestamp the micro queues inside the kernels instead
of abstract the full node as a single queue. The advantages of this scheme are basically study of packet
correlation, for example how packet pairs are being queued, how much, what is the empirical service rate,
if it exists any packet dispersion compression due to the internal queues or expansion, finally which internal
queue of the OS is the most affected by a certain CPU/Mem/IO load mix or even offload mechanism. We
manage to assess the impact of every packet rewriting and the value was a constant of 0.13 micro seconds per
rewrite, a total of 0.78 micro second of overhead per packet. In the experiments section, this extra overhead
was responsible for a cap (packet loss rate) of 2.4% in 400Mbps, 15% in 500Mbps, 30% in 600Mbps, 53% in
700Mbps and 74% in 800Mbps, even though some packets went through.

Figure 2: Packet-Based Measurements

6

3 NOISE CHARACTERIZATION

3 Noise Characterization

The evaluation of “machine noise” was done in separate phases (to accurately separate and dissecate each
one of the noise sources). One of the initial phases consisted of back-to-back packet dispersion (interarrival
difference packet times) measurements in order to understand the behavior of the original source traffic pat-
tern in the presence of interrupt coalescing. In these measurements, we obtained the interarrival time in the
device driver software at the receiver machine connected directly to the sender machine. The sender machine
on the other hand, generate a variety of offered network load traffic and traffic patterns using a modified
thrulay version. All tests were performed 4 times to guarantee statistically significance, also the duration
of each experiment was about 30 seconds. As a future step, we intend to leverage this dataset for future
collaborative studies.

At this step, in order to understand the interrupt coalescing hardware mechanism, we need to explain in
some detail the configuration and how this mechanism works in the Intel 1000MT NIC Server Adapter. The
example to be used is the FreeBSD e1000 latest driver whose default configuration is RX Absolute Interrupt
Delay = 66 µsecs and TX Absolute Interrupt Delay = 66 µsecs as well, that stand for an absolute inter-
rupt cycle of total 132 µsecs, any packets that arrive inside this interval are bunched together. The other
mechanisms presented in the Intel documentation, such as interrupt delay between last packet arrival and
the interrupt, were not used in our experiments.

3.1 Back-to-Back Dispersion - Interarrival Packet Difference

Figure 3: Inter Packet Departures Figure 4: Inter Packet Arrival under Coalescing

The first set of experiments was done using FreeBSD 5.4 along with the instrumentation code. As it

7

3.1 Back-to-Back Dispersion - Interarrival Packet Difference 3 NOISE CHARACTERIZATION

can be seen the original traffic pattern [Figure 3] was a poisson source (exponential interdeparture decay).
However, in the receiver side we can see that the signal was totally disturbed by the interrupt coalescing and
three strong modes happen whenever the traffic offered load is around 100Mbps [Figure 4].

As the offered load increases, the bulk size of an absolute interrupt increases, as well the probability of
a certain packet pair be bunched together [Figures 5 (a), (b), (d), (e)]. Therefore, we can see from the Em-
pirical CDF (Cumulative Distributions) such behavior of the interrupt moderation and without coalescing
[Figures 5 (c) (f)]. In the following Figure 5 the x-axis (variable “x”) represents the interarrival delay in
µsecs, and observe that as the load increases the modes do not change, they still are around 1-2 in µsecs and
a second one around 132 µsecs.

(a) 100 Mbps Offered (b) 500 Mbps Offered (c) 100 Mbps Offered - no coalesce

(d) 700 Mbps Offered (e) 1000 Mbps Offered (f) 700 Mbps Offered - no coalesce

Figure 5: Interarrival Packet Dispersion Under Coalescence

After this initial poisson interarrival characterization, we tried also to further measure the interarrival

8

3.1 Back-to-Back Dispersion - Interarrival Packet Difference 3 NOISE CHARACTERIZATION

packet dispersion whenever we have a pure CBR source, this way we could deterministicly measure the bulk
size with interrupt coalescing and measuring the precision of the tool without coalescing.

(a) 100 Mbps Offered - coalesce (b) 200 Mbps Offered - coalesce (c) 300 Mbps Offered - coalesce

(d) 100 Mbps Offered - no coalesce (e) 200 Mbps Offered - no coalesce (f) 300 Mbps Offered - no coalesce

Figure 6: Interarrival Packet Dispersion Under Coalescence

If one compare carefully the poisson and CBR pattern under coalescing regime will see that the first one
has three modes and the second only two modes, this happen because while the poisson source generates
interdepartures range widely from few µsecs to more than 400 µsecs (figure 3), it triggers two absolute
interrupts every cycle of a second. While the CBR fixed on the 120 µsecs has the majority of packet
coalesced together in the second absolute triggered interrupt (figure 6).

9

3.2 Internal Queueing Delay 3 NOISE CHARACTERIZATION

3.2 Internal Queueing Delay

The second experiment phase focused on the measurement of the internal ip queue and we observe addition-
ally the impact of two factors (source traffic pattern and coalescing) on the size and variance of the ip queue
alone. Let’s start by looking at Linux 2.4.20 IP queue behavior.

(a) 200 Mbps Offered (b) 300 Mbps Offered (c) 400 Mbps Offered

(d) 500 Mbps Offered (e) 600 Mbps Offered (f) 700 Mbps Offered

(g) 800 Mbps Offered (h) 900 Mbps Offered (i) 1000 Mbps Offered

Figure 7: Internal IP Queue Measurement

The first set of results are 30 seconds period samples under poisson traffic generated from one machine
to the other (back to back) measuring only in the receiver the time that a packet reaches the NIC driver
(netif rx in linux 2.4.20) until the time it exits the ip queue and it’s copied into the UDP socket (udp rcv

10

3.2 Internal Queueing Delay 3 NOISE CHARACTERIZATION

in linux 2.4.20). We used only single user mode in both machines to remove any further noise on this scenario.

It is important to notice that the ip queue is extremely small (in terms of delay), only around 1 µsecond and
at our micro level measurement, the two “read operations and the 64 bit difference of the timestamping” from
the TSC register has a special role to create some evenly distributed spikes in the histogram measurements.
The figure 7 above shows all the ip queue histograms (per packet overhead delay due to ipqueue) varying the
offered load from 200Mbps to 1Gbps.

One can say that at 200Mbps offered load, the bulk size from the absolut interrupt coalescing is not that big
to cause the queue to grow as much as 3 µsecs in average, and all packets suffer equally this queueing delay -
not much variance, so this scenario imply that there is not much impact in the application layer delay-based
measurement.

Another issue here, using the poisson process source in this scenario, is that the bulk size is going to be
non-deterministically distributed since the poisson cycle is measured in seconds and the interrupts happen
at 130 µsecs, such uncertainity on the number of packets processed per one single burst, generates more
variability in this ip queue than the CBR case as in Figure 8. As the load grows up, the absolute NIC
interrupt interval is filled with more packets and a full bulk of packets arrive simultaneuosly causing the ip
queue to grow as well.

Figure 8: Internal IP Queue Under CBR and No Coalescing

Continuing our discussion about Figure 7 as the load increases the overhead per packet increases propor-
tionally to the load as well as the queue variance (order of 1-10 µsecs), average 5 µsecs. Such variability

11

3.3 Inserting Machine Stress in Network Delay Measurements 3 NOISE CHARACTERIZATION

could affect delay-based measurements but the measurement pattern was already destroyed by the interrupt
coalescing.

However, this internal queue give us an insight of the bulk size distribution since the embedded proba-
bility process that we are observing here seems quite similar to a bulk arrival system or M/Er/1 markovian
process where the stages represent the sustained bulk size from the interrupt coalescing part (Figure 9). We
can observe that As the offered load reaches the maximum of 1Gbps, it’s clear that the queue is full and
there is no left space since the variance reduces dramatically around 10 µsecs (in figure 7).

Figure 9: Erlang PDF varying the bulk size (n. of stages)

3.3 Inserting Machine Stress in Network Delay Measurements

(a) NIC vs UDP timestamp (b) IP Queueing Receiver (c) IP Queueing ECDF

Figure 10: No Stress Back to Back and Internal Queueing Measurement

In this section, we are going to present results whenever we apply some stress in the system (context

12

3.3 Inserting Machine Stress in Network Delay Measurements 3 NOISE CHARACTERIZATION

switches due to scheduling, strong I/O bus contention, etc). We used the “packet-based measurement”
scheme to measure, each internal queue in a single pass (socket buffer, ip queue buffer and transmission
ring). Additionally, in order to this work be unbiased from the interrupt coalescing point of view, all the
following experiments were under CBR traffic and no coalescing regime. So, only machine noise and the
original signal. Since, there are a quite amount of data, we are going to discuss on top of the 400Mbps
example only.

(a) Interarrival (b) IP Queue (c) IP Queue ECDF

(d) Interarrival (e) IP Queue (f) IP Queue ECDF

(g) Interarrival (h) IP Queue (i) IP Queue ECDF

Figure 11: Internal IP Queue Measurement under CPU Stress (a)(b)(c) 25%, (d)(e)(f) 50%, (g)(h)(i) 75%

13

3.3 Inserting Machine Stress in Network Delay Measurements 3 NOISE CHARACTERIZATION

We start by presenting the baseline results of NO STRESS. In Figure 10 we can see the Linux Internal
queue is quite stable near 1.7 µsecs. Most of this “no stressed” queue variation is about 0.2-0.3 µsecs, in
other words, the timestamping TSC variation error level.

As we add the stress by inserting one, two and three CPU Intensive processes, respectivelly responsible
for 25%, 50% and 85% of CPU utilization we observe the network delay measurement remains the same but
in microscopic scale, the internal queue varies a lot more (Figure 13). It’s a good to remember that Linux
has the network interrupt as the most priority interrupt in the whole OS. For this stressed measurement we
used the tool STRESS from the website http://weather.ou.edu/ apw/projects/stress/.

As the CPU stress increases, the linux internal queue variation has a trend of increase but it’s the amount of
increase can barely be seen from the Empirical CDF graph. And therefore we can observe that under Linux,
no CPU intensive process overcome or disrupt a network service and its precise back to back interarrival
measurements.

Just to point out that whenever we are dealing with non-coalescing regime, we obtain less internal queue
variation, in all analyzed scenarios the IP queue didn’t grow, it was kept always in 1 packet. However, if
we use CBR traffic and coalescing under 400Mbps we obtain a strange Empirical Queue Size Distribution
(uniform!!! - in Figure 12).

(a) CBR + coalescing at 500Mbps - Queue Size Time
Series

(b) CBR + coalescing at 500Mbps - Queue Distribution

Figure 12: Impact of Coalescing on Internal IP Queue Size

The next figure shows the effect in the Linux Internal Queue of I/O intensive processes, again we used

14

3.3 Inserting Machine Stress in Network Delay Measurements 3 NOISE CHARACTERIZATION

the open source to generate 25%, 50% and 75% CPU utilization, but since we are dealing with I/O processes
the kernel is the one that take care of obtaining data.

(a) Interarrival (b) IP Queue (c) IP Queue ECDF

(d) Interarrival (e) IP Queue (f) IP Queue ECDF

(g) Interarrival (h) IP Queue (i) IP Queue ECDF

Figure 13: Internal IP Queue Measurement under CPU Stress (a)(b)(c) 25%, (d)(e)(f) 50%, (g)(h)(i) 75%

15

4 REFERENCES

4 References

Passive Calibration of an Active Measurement System

Design Principles for Accurate Passive Measurement

Evaluation and Characterization of Available Bandwidth Probing Techniques

System Capability Effects on Algorithms for Network Bandwidth Measurement

Towards Tunable Measurement Techniques for Available Bandwidth

Eliminating receive livelock in an interrupt-driven kernel

Effects of Interrupt Coalescence on Network Measurements

Estimating the Impact of Interrupt Coalescing Delays on Steady State TCP Throughput

Analysis and simulation of interrupt overhead impact on OS throughput in high-speed networks

PC Based Precision Timing Without GPS

16

